SECTION - **C** [**3 X 10** = **30**]

Answer Any THREE Questions.

16. Show that the function $u = \sin x \cos hy + 2\cos x \sin hy$ satisfies

Laplace's equation and find the corresponding analytic function u + iv. 17. State and prove the Abel's limit theorem.

18. Let f(z) be analytic function within and on the boundary C of a simply connected region D and let z_0 be any point within C. Then prove that

$$F'(z_0) = \frac{1}{2\pi i} \int \frac{f(z)}{C(z-z_0)^2} dz.$$

19. State and prove the Taylor's theorem.

20.State and prove the Rouche's theorem.

	2 de 1
1	IN COD UNE TRIIST

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade) END SEMESTER EXAMINATION – APRIL 2020

Programme : M.Sc. Mathematics	Date : 16.09.2020
Course Code: 17PMAC41	Time : 10.00 am to 1.00 pm.
Course Title : Complex Analysis	Max. Marks :75

Reg. No:

SECTION	$\mathbf{N} - \mathbf{A}$	[10 X 1 = 10]
Answer ALL the	e Questions.	
Choose the Corr	ect Answer.	
1. A curve F_g given by $z(t) = x(t) + iy(t)$), $\alpha \le t \le \beta$ is called	a Jordan
arc if $z(t)$ is		
[a] one-one	[b] onto	
[c]into	[d] many-one	
2. Two families of curves are said to form	an system	if they
intersect at right angles at each of their	points of intersection	IS.
[a] orthonormal	[b] orthogonal	
[c] intersect	[d] perpendicular	
3. The radius of convergence of $\Sigma(-1)^n$	$(z-2i)^n / n$ is	·
[a] 0	[b] -1	
[c] 1	[d] ∞	
4. The sum function $f(z)$ of the power s	series $\sum a_n z^n$ represe	ents an analytic
function inside the of conve	rgence.	
[a] radius	[b] circumference	
[c] region	[d] circle	

5. If $f(z)$ is analytic at all point	s within and on the closed contour C then	SECTION – B $[5 X 7 = 35]$				
$\int_{C} f(z) dz = \underline{\qquad}.$		Answer ALL the Questions.				
$\int_{C}^{C} \int_{C}^{C} \int_{C$		11. a) Verify whether the real and imaginary parts of $w = sinz satisfy Cauchy-$				
[a] 0	[b] 1	Riemann equations.				
[c] -1	[d] ∞	[OR]				
6. The parametric equation of the c	ircle with center ' a ' and radius r is	b) Show that the function $u = x^3 - 3xy^2$ is harmonic and find the				
z-a r.		corresponding analytic function.				
[a] <	[b] =	12 a) Find the mation of convergence of the series $\sum_{n=1}^{\infty} (1)^{n-1} z^{2n-1}$				
[u] < [c] >	[0] <i>–</i> [d] <i>≠</i>	12. a) Find the region of convergence of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!}$.				
	s only singularities in the finite part of the	[O R]				
plane is said to be a		b) State and prove the Cauchy's criterion for uniform convergence.				
[a] entire	[b] analytic					
[c] meromorphic	[d] removable					
1	is a point at which the function ceases to	13. a) Evaluate by Cauchy's integral formula $\int_{C} \frac{dz}{z(z+\pi i)}$ where c is				
be analytic.	1					
[a] residue	[b] pole	$\left z+3i\right =1.$				
[c] removable	[d] singularity	[OR]				
		b) State and prove the Cauchy's inequality.				
9. The pole of $\frac{z^2}{z^2 + a^2}$ is $z = $		14. a) State and prove the uniqueness theorem.				
[a] ia	[b] -ia	[OR]				
$[c] \pm ia$	[d] a	b) Find the Laurent's series of the function $f(z) = \frac{1}{(z^2 - 4)(z+1)}$ valid				
10. The value of $\frac{1}{2\pi i} \int_{ z =2} \frac{e^z}{z-2} dz$ is		in the region $1 < z < 2$.				
[a] 1	$[b] e^2$	15. a) State and prove the Cauchy's residue theorem.				
[c] -1	[d] ∞	[OR]				
	[0]	b) Find the residues of the function $\frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ at all its poles in the				

finite plane.

15. a) If T is normal, then prove that the M_i 's are pairwise orthogonal.

[OR]

b) If T is normal, then prove that each M_i reduces T.

 $\begin{array}{l} \text{SECTION} - \text{C} & [\ 3 \ \text{X} \ 10 = 30 \] \\ \text{Answer Any THREE Questions.} \end{array}$

16. State and Prove Hahn – Banach Theorem.

17. State and prove the open mapping theorem.

- 18. Let H be a Hilbert space and let f be an arbitrary functional in H^* . Then prove that there exists a unique vector y in H such that $f(x) = \langle x, y \rangle$.
- 19. Prove that the adjoint operation $T \rightarrow T^*$ on B(H) has the following

properties:

a) $(T_1 + T_2)^* = T_1^* + T_2^*$ b) $(\alpha T)^* = \overline{\alpha} T^*$ c) $(T_1 T_2)^* = T_2^* T_1^*$ d) $T^{**} = T$ e) $||T^*|| = ||T||$ f) $||T^*T|| = ||T||^2$

20. Prove that two matrices in A_n are similar iff they are the matrices of a single operator on H relative to different bases.

G.T.N. ARTS COLLEGE (AUTONOMOUS)

Reg. No:

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION - APRIL 2020

Programme : M.Sc. Mathematics	Date : 19.09.2020
Course Code: 17PMAC42	Time : 10.00 a.m to 1.00 p.m
Course Title : Functional Analysis	Max. Marks :75

SECTION – A Answer ALL the Questions. Choose the Correct Answer. [10 X 1 = 10]

1. The set of bounded linear operator on a normed linear space X with a

suitable norm, a _____.

[a] Metric

[c] Banach Space

[b] Normed linear space

[d] Linear Space

2. Every complete subspace of a normed linear space is _____

[a] Compact [c] Bounded [b] Closed [d] Continuous

3. If B is a reflexive Banach space then its closed unit sphere S is _____.

[a] compact	[b] connected
[c] complete	[d] weakly compact

4. Let B and B' be two banach spaces and if T is continuous linear transformation of B and B', then T is _____ mapping.

- [a] Open [b] Closed
- [c] One-One [d] Onto

5.	If unitary operators on H form a	·
	[a] Subgroup	[b] Monoid
	[c] Cyclic	[d] Group
6.	If S is a non-empty subset of a Hilbert s	pace then $S^{\perp} =$
	[a] S	[b] $S^{\perp\perp}$
	$[c] S^{\perp \perp \perp}$	$[d] - S^{\perp}$
7.	The orthogonal complement of subspace	e of a Hilbert space is
	[a] Continuous	[b] Connected
	[c] Compact	[d] Complete
8.	If N is a normal operator on H then $ _N$	² =
	[a] $\ N\ ^2$ [c] $2^{\ N\ }$	$[b] - \frac{\ N\ ^2}{2}$
	$[c] 2^{\ N\ }$	$[d] - N ^2$
9.	If X is an eigen vector of T, then any	non-zero vector x in H such
	$Tx = \lambda x$ is called an eigen vector correspondence of the second secon	ponding to the eigen value
	[a] 1	[b] λ
	[c] 0	[d] ∞
10	. An operator T on H is normal \Leftrightarrow its a	djoint T [*] is a in T.
	[a] Dimension	[b] Basis
	[c] Span	[d] Polynomial

SECTION – B[5 X 7 = 35]Answer ALL the Questions.11. a) Let M be a linear subspace of a real normed linear space N, and let f be
a functional defined on M. If x_0 is a vector not in M, and if
 $M_0 = M + [x_0]$ is the linear subspace spanned by M and x_0 , then prove
that f can be extended to a functional f_0 defined on M_0 such that
 $||f_0|| = ||f||.$

[**OR**]

- b) Prove that if N is an normed linear space and x_0 is a non-zero vector in N, then there exists a functional f_0 in N^{*} such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
- 12. a) If P is a projection on a Banach space B, and if M and N are its range and null space, prove that M and N are closed linear subspaces of B such that $B = M \bigoplus N$.

[**OR**]

b) State and Prove The Closed Graph Theorem.

that

13. a) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.

[**OR**]

- b) If M and N are closed linear subspaces of Hilbert space H such that $M \perp N$, then prove that the linear subspace M + N is also closed.
- 14. a) If A_1 and A_2 are self-adjoint operators on H, then prove that their product A_1A_2 is self-adjoint $\Leftrightarrow A_1A_2 = A_2A_1$.

[**OR**]

b) If N is a normal operator on H, then prove that $||N^2|| = ||N||^2$.

--2--

--3--

1	Reg. N	o:								
G.T.N. ARTS COLLEGE (AUTONOMOUS) (Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade) END SEMESTER EXAMINATION – APRIL 2020										
Cours	Programme :M. Sc. Mathematics Course Code : 17PMAC42Date : 17.09.2020 Time : 10:00 am to 1.00 pm. Max Marks :75						1.			
	SEC	TION -	- A				[]	10 X	1 =	10]
	Answer Al	LL the (Ques	tion	5.		•			
	Choose the	Correc	t An	swe	r.					
o 1. Let	X be a normed linear space as	nd let x,	y∈Σ	K. Th	en	$\ x\ $ -	- y	≤_		
	[a] x+y	[b] <i>y</i>	+2x							
	[c] $ x-y $ [d] $ x-y $									
2. Let	2. Let N be a non-zero normed linear space then N is a Banach space iff									
· · · · · · · · · · · · · · · · · · ·										
	[a] $\{x x < 1\}$ is complete [b] $\{x x = 1\}$ is complete									
[c] $\{x x > 1\}$ is complete [d] $\{x^2 x = 1\}$ is complete										
3. Let N be a normed linear space. Then find out the correct statement.										
[a] the conjugate space N^* is also normed linear space.										
[b] N ^{**} the second conjugate of N										
	[c] $(N^*)^*$ is the conjugate space of N^*									
	[d] all the above are true									
		1								

4. If B and B' are the Banach spaces and if T is a continuous linear	10. If T is normal then
transformation of B onto B', then T is	[a] the M _i 's are pairwise orthogonal [b] each M _i reduces T
[a] closed [b] bounded	[c] the M _i 's span H [d] all of the above true
[c] closed map [d] open mapping	SECTION – B $[5 \times 7 = 35]$
5. In a Hilbert space H, $\langle x, y \rangle =$	Answer ALL the Questions.
$[a] \overline{\langle x, y \rangle} \qquad [b] \langle y, x \rangle$	11. a) Let M be a closed linear subspace of a normal linear space N. If the
$[c] - \langle x, y \rangle$ $[d] - \langle y, x \rangle$	norm of a coset $x+M$ in the quotient space N/M is defined by
6. Two vectors x and y in a Hilbert space H are said to be orthogonal if	$ x+M = \inf \{ x+m / m \in M\}$, then prove that N/M is a Banach space
0 <u></u> -	if N is a Banach space.
$[a] < x, y \ge 0$ $[b] < x, y \ge 0$	[OR]
[c] $ x+y = 0$ [d] $ x-y = 0$	b) If N is a normed linear space and x_0 is non-zero vector in N then prove
7. $ T^*T = $	that there exist a functional f_0 in N^* such that $f_0(x_0) = x_0 $ and $ f_0 = 1$.
<i>′</i> . ∥ <i>′ ′</i> ∥ [−] <u>−−−−</u> .	¹ 12. a) If N is a normed linear space then prove that the closed unit sphere S^* in
[a] $ T ^2$ [b] T ²	N^* is a compact Hausdroff space in the weak * topology.
$[c] - T^2$ [d] 2T	[OR]
8. If A_1 and A_2 are self- adjoint operators on H, then their product $A_1 A_2$	is b) State and prove the closed graph theorem.
self-adjoint iff	13. a) State and prove the Schwarz inequality.
[a] $A_1 A_2 = -A_2 A_1$ [b] $A_1 A_2 = -A_1 A_2$	[OR]
$[c] A_1 A_2 = A_2 A_1 \qquad [d] A_1 A_2 = 0$	b) If M is a closed linear subspace of a Hilbert space H then prove that
9. The dimension of $B(H)$ is	$H = M \oplus M^{\perp}.$
$[a] n \qquad [b] n^2$	14. a) Prove that in the adjoint operation $T \rightarrow T^*$ on B(H) has the following
[c] n^3 [d] 2n	properties:
	i) $(T_1+T_2)^* = T_1^* + T_2^*$ ii) $(\alpha T)^* = \overline{\alpha} T^*$
2	iii) $(T_1T_2)^* = T_2^* T_1^*$ iv) $T^{**} = T$

--3---

.

[OR]

- b) If N_1 and N_2 are normal operators on H with the property that either commutes with the adjoint of the other then prove that $N_1 + N_2$ and N_1N_2 are normal.
- 15. a) If T is normal then prove that Mi's are pairwise orthogonal.

[OR]

b) If T is normal then prove that the M_i's span H.

SECTION – C
$$[3 X 10 = 30]$$

Answer Any THREE Questions.

16. Let N and N' be normed linear spaces and T a linear transformation of N into N'. Then prove that the following are equivalent to one another.

a) T is continuous

b) T is continuous at the origin in the sense that $x_n \rightarrow 0 \Rightarrow T(x_n) \rightarrow 0$.

- c) There exists a real number k > 0 with the property that
 - $T(x) \leq k \mid x \mid \forall x \in N.$
- d) if $S = \{x/||x|| \le 1\}$ is the closed unit sphere in N₁ then its image T(s) is a bounded set in N'.

17. State and prove the open mapping theorem.

- Let H be a Hilbert space and let {e_i} be an orthonormal set in H then prove the following are equivalent
 - a) $\{e_i\}$ is complete b) $x \perp \{e_i\} \Rightarrow x = 0$
 - c) if x is an arbitrary vector in H, then $x = \Sigma \langle x, \rho_i \rangle \rho_i$
 - d) if x is an arbitrary vector in H, then $||x||^2 = \sum |\langle x, \rho_i|^2$

19. i) If T is an operator on H for which $\langle Tx, x \rangle = 0 \forall x$, then prove that T = 0.

ii) An operator T on H is self-adjoint iff $\langle Tx, x \rangle$ is real for all x.

20. Prove that two matrices in A_n are similar iff they are the matrices of a single operator on H relative to different bases.

--5--

--4--

Reg. No:					1

[c] 2

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – APRIL 2020

Programme : M. Sc. Mathematics	Date : 18.09.2020
Course Code: 17PMAE4	Time : 10:00 am to 1:00 pm.
Course Title : Mathematical Statistics	Max. Marks :75

SECTION – A

[10 X 1 = 10]

Answer ALL the Questions.

Choose the Correct Answer.

1. Let Q(A) be equal to the number of points (x, y) in A. If $Q(A_1) = 16$,

 $Q(A_2) = 7$ and $Q(A_1 \cup A_2) = 21$, then $Q(A_1 \cap A_2) =$ _____.

- [a] 1 [b] 2 [c] 3 [d] 0
 - [u] 0
- 2. Let $f(x) = \frac{1}{r^2}$, $0 < x < \infty$, 0 elsewhere be the probability density function

of X. If $A_1 = \{x : 1 < x < 2\}$. Then $P(A_1) =$ _____. [a] 1 [b] $\frac{1}{2}$

[d] 0

3. If $A_1 \& A_2$ are subsets of A, the conditional probability of the event A_2 ,				
given the event A ₁ is $P\left(\frac{A_2}{A_1}\right) = -$				
$[a] P(A_1 \cup A_2)$	$[b] \frac{P(A_1 \cap A_2)}{P(A_2)}$			
$[c]\frac{P(A_1 \cap A_2)}{P(A_1)}$	[d] $P(A_2)$			
4. If X and Y are independent random	n variables, then $\rho = _$.			
[a] 0	[b] 1			
[c] -1	[d] 2			
5. In which distribution, the mean and	d variance are equal?			
[a] Binomial	[b] Poisson			
[c] Normal	[d] Gamma			
6. The gamma distribution transforms	s to an exponential distribution with			
$\alpha = \underline{\qquad}$				
[a] 1	[b] 0			
[c] 2	[d] -1			
7. In a 't' distribution, the value of β	$P_2 = _$.			
[a] 0	[b] 3			
[c] 1	[d] 2			
8. Let X have the uniform distribution	n over the interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.			
Then Y = tan X has a	distribution.			
[a] Chi square	[b] Gamma			
[c] Cauchy	[d] Normal			

9. If $r = \frac{1}{2}$, then the variance of chi-square distribution is _ [b] 2 [a] ½ [d] 0 [c] 1 10. If $\frac{Y_n}{n}$ converges stochastically to 'p', then $1 - \frac{Y_n}{n}$ converges stochastically to _____. [b] 1-p [a] p [d] 1 [c] 0 $[5 \times 7 = 35]$ SECTION - B Answer ALL the Questions. 11. a) Let the probability density function of X and Y be f(x, y) = 2, 0 < x < y, 0 < y < 1, 0 elsewhere. Prove or disprove E(X).E(Y) = E(XY).[OR] b) State and prove Chebyshev's inequality. 12. a) State and prove Baye's formula for conditional probability. [OR] b) Let the joint probability density function of X_1 and X_2 be $f(x_1, x_2) = \frac{x_1 + x_2}{21}$, $x_1 = 1, 2, 3$; $x_2 = 1, 2 \& 0$ elsewhere. Find the marginal density functions. 13. a) Derive recurrence relation for the moments of the binomial distribution.

[OR]

--3--

b) In a chi-square distribution, if $(1-2t)^{-6}$, $t < \frac{1}{2}$ is the moment

generating function of the random variable X, find P(X < 5.23).

14. a) Let X1, X2, X3 be a random sample of size 3 from a distribution that is n(6,4). Determine the probability that the largest sample item exceeds 8.[OR]

b) Let T have a 't' distribution with 14 degrees of freedom. Determine 'b' so that, P(-b < T < b) = 0.90.

15. a) Let $\overline{X_n}$ denotes the mean of a random sample of size *n* from a distribution that has mean μ and positive variance σ^2 . Show that $\overline{X_n}$ converges stochastically to μ if σ^2 is finite.

[OR]

b) Let \overline{X} denote the mean of a random sample of size 100 from a distribution that is χ^2 (50). Compute an approximate value of $P(49 < \overline{X} < 51)$.

--4--

SECTION – C [3 X 10 = 30]

Answer Any THREE Questions.

16. Find the mean and variance of the distribution that has the distribution function:

$$f(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{8}, & 0 \le x < 2 \\ \frac{x^2}{16}, & 2 \le x < 4 \\ 1 & 4 \le x \end{cases}$$

17. If X and Y have the joint p.d.f. $f(x, y) = \begin{cases} x+y, & 0 < x < 1, & 0 < y < 1 \\ 0, & elsewhere \end{cases}$.

Show that the correlation coefficient of X and Y is $\rho = \frac{-1}{11}$.

18. Compute the measures of skewness and kurtosis of a gamma distribution with parameters $\alpha \& \beta$.

--5--

- 19. Derive student's 't' distribution.
- 20. State and prove Central Limit theorem.