Answer Any THREE Questions.

16. Show that the function $u=\sin x \cos h y+2 \cos x \sin h y$ satisfies Laplace's equation and find the corresponding analytic function $u+i v$.
17. State and prove the Abel's limit theorem.
18. Let $f(z)$ be analytic function within and on the boundary C of a simply connected region D and let z_{0} be any point within C . Then prove that $F^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int \frac{f(z)}{C\left(z-z_{0}\right)^{2}} d z$.
19. State and prove the Taylor's theorem.
20.State and prove the Rouche's theorem.
\square

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)
(Accredited by NAAC with ' B ' Grade)

END SEMESTER EXAMINATION - APRIL 2020

Programme : M.Sc. Mathematics
 Course Code: 17PMAC41

Course Title: Complex Analysis

Date : 16.09.2020
Time : 10.00 am to 1.00 pm .
Max. Marks :75

SECTION - A

[10 X 1 = 10]

Answer ALL the Questions.

Choose the Correct Answer.

1. A curve F_{g} given by $z(t)=x(t)+i y(t), \alpha \leq t \leq \beta$ is called a Jordan arc if $z(t)$ is \qquad -.
[a] one-one
[b] onto
[c]into
[d] many-one
2. Two families of curves are said to form an \qquad system if they intersect at right angles at each of their points of intersections.
[a] orthonormal
[b] orthogonal
[c] intersect
[d] perpendicular
3. The radius of convergence of $\sum(-1)^{n}(z-2 i)^{n} / n$ is \qquad .
[a] 0
[b] -1
[c] 1
[d] ∞
4. The sum function $f(z)$ of the power series $\sum a_{n} z^{n}$ represents an analytic function inside the \qquad of convergence.
[a] radius
[b] circumference
[c] region
[d] circle
5. If $f(z)$ is analytic at all points within and on the closed contour C then $\int_{C} f(z) d z=$ \qquad _.
[a] 0
[b] 1
[c] -1
[d] ∞
6. The parametric equation of the circle with center ' a ' and radius r is $|z-a|$ \qquad r.
[a] <
[b] =
[c] >
[d] \neq
7. A function which has poles as its only singularities in the finite part of the plane is said to be a \qquad function.
[a] entire
[b] analytic
[c] meromorphic
[d] removable
8. The \qquad of a function is a point at which the function ceases to be analytic.
[a] residue
[b] pole
[c] removable
[d] singularity
9. The pole of $\frac{z^{2}}{z^{2}+a^{2}}$ is $z=$ \qquad
[a] ia
[b] - ia
[c] $\pm i a$
[d] a
10. The value of $\frac{1}{2 \pi i} \int_{k \in\{3} \frac{e^{z}}{z-2} d z$ is \qquad -
[a] 1
$[b] \mathrm{e}^{2}$
[c] -1
[d] ∞

SECTION - B

[5 X $7=35$]

Answer ALL the Questions.

11. a) Verify whether the real and imaginary parts of $w=\operatorname{sinz}$ satisfy CauchyRiemann equations.

[OR]

b) Show that the function $u=x^{3}-3 x y^{2}$ is harmonic and find the corresponding analytic function.
12. a) Find the region of convergence of the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{2 n-1}}{(2 n-1)!}$.

[OR]

b) State and prove the Cauchy's criterion for uniform convergence.
13. a) Evaluate by Cauchy's integral formula $\int_{C} \frac{d z}{z^{z}(z+\pi i)}$ where c is $|z+3 i|=1$.

[OR]

b) State and prove the Cauchy's inequality.
14. a) State and prove the uniqueness theorem.
[OR]
b) Find the Laurent's series of the function $f(z)=\frac{1}{\left(z^{2}-4\right)(z+1)}$ valid in the region $1<|z|<2$.
15. a) State and prove the Cauchy's residue theorem.
[OR]
b) Find the residues of the function $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at all its poles in the finite plane.
15. a) If T is normal, then prove that the $\mathrm{M}_{\mathrm{i}}{ }^{\prime} \mathrm{S}$ are pairwise orthogonal.
[OR]
b) If T is normal, then prove that each M_{i} reduces T .
SECTION - C
$[\mathbf{3} \times 10=30]$

Answer Any THREE Questions.

16. State and Prove Hahn - Banach Theorem.
17. State and prove the open mapping theorem.
18. Let H be a Hilbert space and let f be an arbitrary functional in H^{*}. Then prove that there exists a unique vector y in H such that $\mathrm{f}(\mathrm{x})=\langle\mathrm{x}, \mathrm{y}\rangle$.
19. Prove that the adjoint operation $T \rightarrow T^{*}$ on $B(H)$ has the following properties:
a) $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{*}=\mathrm{T}_{1}{ }^{*}+\mathrm{T}_{2}{ }^{*}$
b) $(\alpha \mathrm{T})^{*}=\bar{\alpha} \mathrm{T}^{*}$
c) $\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}=\mathrm{T}_{2}{ }^{*} \mathrm{~T}_{1}{ }^{*}$
d) $\mathrm{T}^{* *}=\mathrm{T}$
e) $\left\|T^{*}\right\|=\|T\|$
f) $\left\|T^{*} T\right\|=\|T\|^{2}$
20. Prove that two matrices in A_{n} are similar iff they are the matrices of a single operator on H relative to different bases.
\square
G.T.N. ARTS COLLEGE (autonomous)
(Affiliated to Madurai Kamaraj University)
(Accredited by NAAC with ' B ' Grade)
END SEMESTER EXAMINATION - APRIL 2020

Programme : M.Sc. Mathematics
 Course Code: 17PMAC42
 Course Title : Functional Analysis

SECTION - A

Date : 19.09.2020
Time : 10.00 a.m to 1.00 p.m
Max. Marks :75

Answer ALL the Questions.

Choose the Correct Answer.

1. The set of bounded linear operator on a normed linear space X with a suitable norm, a \qquad _.
[a] Metric
[b] Normed linear space
[c] Banach Space
[d] Linear Space
2. Every complete subspace of a normed linear space is \qquad .
[a] Compact
[b] Closed
[c] Bounded
[d] Continuous
3. If B is a reflexive Banach space then its closed unit sphere S is \qquad .
[a] compact
[b] connected
[c] complete
[d] weakly compact
4. Let B and B' be two banach spaces and if T is continuous linear transformation of B and B', then T is \qquad mapping.
[a] Open
[b] Closed
[c] One-One
[d] Onto
5. If unitary operators on H form a \qquad .
[a] Subgroup
[b] Monoid
[c] Cyclic
[d] Group
6. If S is a non-empty subset of a Hilbert space then $\mathrm{S}^{\perp}=$ \qquad .
[a] S
[b] $\mathrm{S}^{\perp \perp}$
[c] $\mathrm{S}^{\perp \perp \perp}$
[d] - S^{\perp}
7. The orthogonal complement of subspace of a Hilbert space is \qquad -.
[a] Continuous
[b] Connected
[c] Compact
[d] Complete
8. If N is a normal operator on H then $\left\|N^{2}\right\|=$ \qquad .
[a] $\|N\|^{2}$
[b] - $\|N\|^{2}$
[c] $2{ }^{\|N\|}$
[d] - $\left\|N^{2}\right\|$
9. If X is an eigen vector of T, then any non-zero vector x in H such that $T x=\lambda x$ is called an eigen vector corresponding to the eigen value \qquad .
[a] 1
[b] λ
[c] 0
[d] ∞
10. An operator T on H is normal \Leftrightarrow its adjoint T^{*} is a \qquad in T .
[a] Dimension
[b] Basis
[c] Span
[d] Polynomial

Answer ALL the Questions.

11. a) Let M be a linear subspace of a real normed linear space N, and let f be a functional defined on M. If x_{0} is a vector not in M, and if $\mathrm{M}_{0}=\mathrm{M}+\left[\mathrm{x}_{0}\right]$ is the linear subspace spanned by M and x_{0}, then prove that f can be extended to a functional f_{0} defined on M_{0} such that $\left\|f_{0}\right\|=\|f\|$.

[OR]

b) Prove that if N is an normed linear space and x_{0} is a non-zero vector in N , then there exists a functional f_{0} in N^{*} such that $\mathrm{f}_{0}\left(\mathrm{x}_{0}\right)=\left\|x_{0}\right\|$ and $\left\|f_{0}\right\|=1$.
12. a) If P is a projection on a Banach space B , and if M and N are its range and null space, prove that M and N are closed linear subspaces of B such that $\mathrm{B}=\mathrm{M} \oplus N$.

[OR]

b) State and Prove The Closed Graph Theorem.
13. a) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.

[OR]

b) If M and N are closed linear subspaces of Hilbert space H such that $\mathrm{M}^{\perp} \mathrm{N}$, then prove that the linear subspace $\mathrm{M}+\mathrm{N}$ is also closed.
14. a) If A_{1} and A_{2} are self-adjoint operators on H , then prove that their product $A_{1} A_{2}$ is self-adjoint $\Leftrightarrow A_{1} A_{2}=A_{2} A_{1}$.

[OR]

b) If N is a normal operator on H , then prove that $\left\|N^{2}\right\|=\|N\|^{2}$.
\square

G.T.N. ARTS COLLEGE (Autonomous)

(Affiliated to Madurai Kamaraj University)
(Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - APRIL 2020

Programme:M. Sc. Mathematics
Course Code : 17PMAC42
Course Title : Functional Analysis

Date : 17.09.2020
Time : 10:00 am to 1.00 pm .
Max Marks :75

SECTION - A
[$10 \times 1=10]$
Answer ALL the Questions.
Choose the Correct Answer.

1. Let X be a normed linear space and let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then $|\|x\|-\|y\|| \leq$ \qquad .
[a] $\|x+y\|$
[b] $\|y+2 x\|$
[c] $\|x-y\|$
[d] $|x-y|$
2. Let N be a non-zero normed linear space then N is a Banach space iff
\qquad —.
[a] $\{x \mid\|x\|<1\}$ is complete
[b] $\{x \mid\|x\|=1\}$ is complete
[c] $\{x \mid\|x\|>1\}$ is complete
[d] $\left\{x^{2} \mid\|x\|=1\right\}$ is complete
3. Let N be a normed linear space. Then find out the correct statement.
[a] the conjugate space N^{*} is also normed linear space.
[b] $\mathrm{N}^{* *}$ the second conjugate of N
[c] $\left(\mathrm{N}^{*}\right)^{*}$ is the conjugate space of N^{*}
[d] all the above are true
4. If B and B^{\prime} are the Banach spaces and if T is a continuous linear transformation of B onto B^{\prime}, then T is \qquad .
[a] closed
[c] closed map
[b] bounded
[d] open mapping
5. In a Hilbert space $H,\langle x, y>=$ \qquad .
[a] $\overline{\langle x, y\rangle}$
[b] $\langle y, x\rangle$
$[\mathrm{c}]-\langle x, y\rangle$
[d] $-<y, x\rangle$
6. Two vectors x and y in a Hilbert space H are said to be orthogonal if
\qquad -.
[a] $\langle x, y\rangle \neq 0$
[b] $\langle x, y\rangle=0$
$[\mathrm{c}]|x+y|=0$
[d] $\|x-y\|=0$
7. $\left\|T^{*} T\right\|=$ \qquad
[a] $\|T\|^{2}$
[b] T^{2}
[c] $-\mathrm{T}^{2}$
[d] 2 T
8. If A_{1} and A_{2} are self- adjoint operators on H, then their product $A_{1} A_{2}$ is self-adjoint iff \qquad -.
[a] $A_{1} A_{2}=-A_{2} A_{1}$
[b] $A_{1} A_{2}=-A_{1} A_{2}$
[c] $A_{1} A_{2}=A_{2} A_{1}$
[d] $A_{1} A_{2}=0$
9. The dimension of $\mathrm{B}(H)$ is \qquad .
[a] n
[b] n^{2}
[c] n^{3}
[d] $2 n$
10. If T is normal then \qquad -
[a] the M_{i} 's are pairwise orthogonal
[b] each M_{i} reduces T
[c] the Mi_{i} 's span H
[d] all of the above true
[5 $\times 7=35$]

SECTION - B

Answer ALL the Questions.

11. a) Let M be a closed linear subspace of a normal linear space N. If the norm of a coset $x+M$ in the quotient space N / M is defined by $\|x+M\|=\inf \{\|x+m\| / m \in M\}$, then prove that N / M is a Banach space if N is a Banach space.

[OR]

b) If N is a normed linear space and x_{0} is non-zero vector in N then prove that there exist a functional f_{0} in N^{*} such that $\mathrm{f}_{0}\left(\mathrm{x}_{0}\right)=\left\|x_{0}\right\|$ and $\left\|f_{0}\right\|=1$.
12. a) If N is a normed linear space then prove that the closed unit sphere S^{*} in N^{*} is a compact Hausdroff space in the weak * topology.
[OR]
b) State and prove the closed graph theorem.
13. a) State and prove the Schwarz inequality.
[OR]
b) If M is a closed linear subspace of a Hilbert space H then prove that $H=M \oplus M^{\perp}$.
14. a) Prove that in the adjoint operation $\mathrm{T} \rightarrow \mathrm{T}^{*}$ on $\mathrm{B}(\mathrm{H})$ has the following properties:
i) $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{*}=\mathrm{T}_{1}{ }^{*}+\mathrm{T}_{2}{ }^{*}$
ii) $(\alpha \mathrm{T})^{*}=\bar{\alpha} \mathrm{T}^{*}$
iii) $\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}=\mathrm{T}_{2}{ }^{*} \mathrm{~T}_{1}{ }^{*}$
iv) $\mathrm{T}^{* *}=\mathrm{T}$

[OR]

b) If N_{1} and N_{2} are normal operators on H with the property that either commutes with the adjoint of the other then prove that $\mathrm{N}_{1}+\mathrm{N}_{2}$ and $\mathrm{N}_{1} \mathrm{~N}_{2}$ are normal.
15. a) If T is normal then prove that Mi_{i} 's are pairwise orthogonal.

[OR]

b) If T is normal then prove that the M_{i} 's span H .
SECTION - C

$$
[3 \times 10=30]
$$

Answer Any THREE Questions.

16. Let N and N^{\prime} be normed linear spaces and T a linear transformation of N into N^{\prime}. Then prove that the following are equivalent to one another.
a) T is continuous
b) T is continuous at the origin in the sense that $\mathrm{x}_{n} \rightarrow 0 \Rightarrow \mathrm{~T}\left(\mathrm{x}_{\mathrm{n}}\right) \rightarrow 0$.
c) There exists a real number $\mathrm{k}>0$ with the property that $\|T(x)\| \leq k\|x\| \forall x \in N$.
d) if $S=\{x /\|x\| \leq 1\}$ is the closed unit sphere in N_{1} then its image $\mathrm{T}(\mathrm{s})$ is a bounded set in N^{\prime}.
17. State and prove the open mapping theorem.
18. Let H be a Hilbert space and let $\left\{\mathrm{e}_{\mathrm{i}}\right\}$ be an orthonormal set in H then prove the following are equivalent
a) $\left\{\mathrm{e}_{\mathrm{i}}\right\}$ is complete
b) $\mathrm{x} \perp\left\{\mathrm{e}_{\mathrm{i}}\right\} \Rightarrow x=0$
c) if x is an arbitrary vector in H , then $x=\Sigma<x, \rho_{i}>\rho_{i}$
d) if x is an arbitrary vector in H , then $\|x\|^{2}=\Sigma\left|<x, \rho_{i}\right|^{2}$
19. i) If T is an operator on H for which $\langle T x, x\rangle=0 \forall x$, then prove that $T=0$.
ii) An operator T on H is self-adjoint iff $\langle T x, x\rangle$ is real for all x.
20. Prove that two matrices in A_{n} are similar iff they are the matrices of a single operator on H relative to different bases.

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)
(Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - APRIL 2020

Programme : M. Sc. Mathematics
Course Code: 17PMAE42
Course Title : Mathematical Statistics

Date : 18.09.2020 Time : 10:00 am to 1:00 pm.
Max. Marks :75

SECTION - A
[10 X $1=10]$

Answer ALL the Questions.

Choose the Correct Answer.

1. Let $Q(A)$ be equal to the number of points (x, y) in A. If $Q\left(A_{1}\right)=16$, $\mathrm{Q}\left(\mathrm{A}_{2}\right)=7$ and $Q\left(A_{1} \cup A_{2}\right)=21$, then $Q\left(A_{1} \cap A_{2}\right)=$ \qquad _.
[a] 1
[b] 2
[c] 3
[d] 0
2. Let $f(x)=\frac{1}{x^{2}}, 0<x<\infty, 0$ elsewhere be the probability density function of X. If $A_{1}=\{x: 1<x<2\}$. Then $\mathrm{P}\left(\mathrm{A}_{1}\right)=$ \qquad -.
[a] 1
[b] $1 / 2$
[c] 2
[d] 0
3. If $A_{1} \& A_{2}$ are subsets of A, the conditional probability of the event A_{2}, given the event A_{1} is $P\left(A_{2} / A_{1}\right)=$ \qquad -.
[a] $P\left(A_{1} \cup A_{2}\right)$
[b] $\frac{P\left(A_{1} \cap A_{2}\right)}{P\left(A_{2}\right)}$
[c] $\frac{P\left(A_{1} \cap A_{2}\right)}{P\left(A_{1}\right)}$
[d] $P\left(A_{2}\right)$
4. If X and Y are independent random variables, then $\rho=$ \qquad .
[a] 0
[b] 1
[c] -1
[d] 2
5. In which distribution, the mean and variance are equal?
[a] Binomial
[b] Poisson
[c] Normal
[d] Gamma
6. The gamma distribution transforms to an exponential distribution with $\alpha=$ \qquad -
[a] 1
[b] 0
[c] 2
[d] -1
7. In a ' t ' distribution, the value of $\beta_{2}=$ \qquad -
[a] 0
[b] 3
[c] 1
[d] 2
8. Let X have the uniform distribution over the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Then $\mathrm{Y}=\tan \mathrm{X}$ has a \qquad distribution.
[a] Chi square
[b] Gamma
[c] Cauchy
[d] Normal
9. If $r=1 / 2$, then the variance of chi-square distribution is \qquad ,
[a] $1 / 2$
[b] 2
[c] 1
[d] 0
10. If $\frac{Y_{n}}{n}$ converges stochastically to ' p ', then $1-\frac{Y_{n}}{n}$ converges stochastically to \qquad -
[a]p
[b] 1-p
[c] 0
[d] 1

SECTION - B

$[5 \times 7=35]$

Answer ALL the Questions.

11. a) Let the probability density function of X and Y be $f(x, y)=2,0<x<y, 0<y<1,0$ elsewhere. Prove or disprove $E(X) \cdot E(Y)=E(X Y)$.
[OR]
b) State and prove Chebyshev's inequality.
12. a) State and prove Baye's formula for conditional probability.
[OR]
b) Let the joint probability density function of X_{1} and X_{2} be

$$
f\left(x_{1}, x_{2}\right)=\frac{x_{1}+x_{2}}{21}, x_{1}=1,2,3 ; x_{2}=1,2 \& 0 \text { elsewhere }
$$

Find the marginal density functions.
13. a) Derive recurrence relation for the moments of the binomial distribution.
[OR]
b) In a chi-square distribution, if $(1-2 t)^{-6}, t<\frac{1}{2}$ is the moment generating function of the random variable X , find $P(X<5.23)$.
14. a) Let X_{1}, X_{2}, X_{3} be a random sample of size 3 from a distribution that is $\mathrm{n}(6,4)$. Determine the probability that the largest sample item exceeds 8 .
[OR]
b) Let T have a ' t ' distribution with 14 degrees of freedom. Determine ' b ' so that, $P(-b<T<b)=0.90$.
15. a) Let $\overline{X_{n}}$ denotes the mean of a random sample of size n from a distribution that has mean μ and positive variance σ^{2}. Show that $\overline{X_{n}}$ converges stochastically to $\mu \mathrm{if} \sigma^{2}$ is finite.

[OR]

b) Let \bar{X} denote the mean of a random sample of size 100 from a distribution that is $\chi^{2}(50)$. Compute an approximate value of $P(49<\bar{X}<51)$.

Answer Any THREE Questions.

16. Find the mean and variance of the distribution that has the distribution function:

$$
f(x)=\left\{\begin{array}{lc}
0 & x<0 \\
\frac{x}{8}, & 0 \leq x<2 \\
\frac{x^{2}}{16}, & 2 \leq x<4 \\
1 & 4 \leq x
\end{array}\right.
$$

17. If X and Y have the joint p.d.f. $f(x, y)=\left\{\begin{array}{cc}x+y, & 0<x<1,0<y<1 \\ 0, & \text { elsewhere }\end{array}\right.$. Show that the correlation coefficient of X and Y is $\rho=\frac{-1}{11}$.
18. Compute the measures of skewness and kurtosis of a gamma distribution with parameters $\alpha \& \beta$.
19. Derive student's ' t ' distribution.
20. State and prove Central Limit theorem.
